|本期目录/Table of Contents|

[1]崔小康,骆菁菁,熊杰.细菌纤维素/聚己内酯微米纤维复合膜的制备及性能[J].现代纺织技术,2020,28(2):1-7.
 CUI Xiaokang,LUO Jingjing,XIONG Jie.Preparation and Properties of Bacterial Cellulose/PolycaprolactoneMicrofibrous Composite Membranes[J].Advanced Textile Technology,2020,28(2):1-7.
点击复制

细菌纤维素/聚己内酯微米纤维复合膜的制备及性能()
分享到:

《现代纺织技术》[ISSN:1009-265X/CN:33-1249/TS]

卷:
28
期数:
2020年2期
页码:
1-7
栏目:
出版日期:
2020-03-10

文章信息/Info

Title:
Preparation and Properties of Bacterial Cellulose/PolycaprolactoneMicrofibrous Composite Membranes
文章编号:
1009-265X(2020)02-0001-07
作者:
崔小康骆菁菁熊杰
浙江理工大学,a.材料与纺织学院、丝绸学院;b.生命科学与医药学院,杭州310018
Author(s):
CUI Xiaokang LUO Jingjing XIONG Jie
a.Silk Institute, College of Materials and Textiles; b.College of Life Sciences and Medicine,Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
细菌纤维素聚己内酯静电纺丝复合纤维材料微米纤维膜
分类号:
TQ316.6
文献标志码:
A
摘要:
为制备模拟细胞外基质结构的微纳尺度复合材料,利用静电纺丝技术制备了聚己内酯(Polycaprolactone,PCL)微米纤维膜,通过与纳米尺度的细菌纤维素(Bacterial Cellulose, BC)原位复合,制备了BC/PCL复合纤维支架。采用扫描电镜、红外光谱分析、X射线衍射分析对材料的形貌、结构进行了表征。通过单轴力学测试对复合材料力学性能进行了研究,并利用成纤维细胞对复合材料的生物相容性进行评价。结果表明:通过静电纺丝法制备的PCL微米纤维的平均直径,随聚合物纺丝液质量分数的增加有增加的趋势,BC与PCL微米纤维复合后,BC纳米纤维渗透入微米纤维膜内部,实现微纳米纤维较好的复合。红外光谱分析和X射线衍射分析进一步证明BC和PCL微米纤维成功复合。PCL微米纤维膜复合BC膜后,相比PCL微米纤维膜增加了其断裂强度,同时复合支架无明显细胞毒性,可应用于生物医学领域。

参考文献/References:

[1] LUO H L, DONG J J, XU X H, et al. Exploring excellent dispersion of graphene nanosheets in three dimensional bacterial cellulose for ultrastrong nanocomposite hydrogels[J]. Composites Part A: Applied Science and Manufacturing, 2018,109:290-297.
[2] DE OLIVEIRA BARUD H G, DA SILVA R R, DA SILVA BARUD H, et al. A multipurpose natural and renewable polymer in medical applications: Bacterial cellulose[J]. Carbohydrate Polymers, 2016,153:406-420.
[3] FENG Y Y, ZHANG X Q, SHEN Y T, et al. A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite[J]. Carbohydrate Polymers, 2012,87(1):644-649.
[4] ZHANG H L, WANG

[5] PRIYADHARSINI K, JAYARAMA R V, BALCHANDAR〖JP〗 N, et al. Polycaprolactone nanofibers for the controlled release of tetracycline hydrochloride[J]. Materials Letters, 2015,141:180-186.
[6] FIGUEIREDO A R P, SILVESTRE A J D, NETO C P, FREIRE C S R. In situ, synthesis of bacterial cellulose/polycaprolactone blends for hot pressing nanocomposite films production[J]. Carbohydrate Polymers, 2015,132:400-408.
[7] AYDOGDU M O, ALTUN E, CRABBEMANN M, et al. Cellular interactions with bacterial cellulose: polycaprolactone nanofibrous scaffolds produced by a portable electrohydrodynamic gun for pointofneed wound dressing[J]. International Wound Journal, 2018,15(5):789-797.
[8] LV X G, YANG J X, FENG C, et al. A bacterial cellulosebased biomimetic nanofibrous scaffold with muscle cells for hollow organ tissue engineering[J]. ACS Biomaterials Science & Engineering, 2016,2(1):19-29.
[9] LOWERY J L, DATTA N, RUTLEDGE G C. Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(ε  caprolactone) fibrous mats[J]. Biomaterials, 2010,31(3):491-504.
[10] ILDEU H L P,ELIANE A,LUC A, et al. Differentiation of human adiposederived stem cells seeded on mineralized electrospun coaxial poly(ε  caprolactone) (PCL)/gelatin nanofibers[J]. Journal of Materials Science: Materials in Medicine, 2014,25(4):1137-1148.

相似文献/References:

[1]陈海宏. 细菌纤维素制备功能材料的研究进展[J].现代纺织技术,2013,(02):57.
 CHEN Haihong. Research Progress of Functional Materials Prepared by Bacterial Cellulose[J].Advanced Textile Technology,2013,(2):57.
[2]王新,骆菁菁,熊杰.PLA/PCL PANI复合纳米纤维膜的制备及性能研究[J].现代纺织技术,2019,27(01):1.
 WANG Xin,LUO Jingjing,XIONG Jie.Preparation and Performance of the PLA/PCL PANI  Composite Nanofibers Membrane[J].Advanced Textile Technology,2019,27(2):1.

备注/Memo

备注/Memo:
收稿日期:2019-04-04
网络出版日期:2019-06-18
基金项目:国家自然科学基金资助项目(11272289);浙江省院士专家工作站(116129A4Q17002)
作者简介:崔小康(1997-),男,山西临汾人,2015级材料科学与工程专业本科生
通信作者:熊杰,E-mail:jxiong@zstu.edu.cn
更新日期/Last Update: 2020-04-06